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Abstract 
 
This paper tests the accuracy of the commonly used cutoffs for determining the 
statistical significance of autocorrelations in time series. Monte Carlo simulations 
with 50,000 replicates were used to generate 95% confidence limits by varying 
sample size from 21 to 252 using both normally distributed and t-distributed data. 
The simulations show that the confidence limits derived from the commonly used 
formulas are biased at sample sizes of less than several hundred and should not 
be used. 
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Introduction  

 
Building a model to forecast the future values of a time series requires that we 
determine if there are any statistically significant autocorrelations in the data. The 
classic autoregressive integrated moving average (ARIMA) model of Box and 
Jenkins, as well as the autoregressive conditional heteroskedasticity (ARCH) 
family of models, use analysis of autocorrelation to guide the model building 
process. [1-5] The Box-Jenkins model identification procedure involves tests of 
the statistical significance of the elements of the autocorrelation function (ACF) 
and partial autocorrelation function (PACF). These tests are used to determine if 
autoregressive and/or moving average patterns are present in the time series. 
 
These statistical tests check if the observed autocorrelations exceed theoretical 
cutoffs. If they do, the autocorrelation at that time lag is deemed significant. 
Incorrect cutoffs would cause serious problems. Using incorrect cutoffs in the 
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model building process will miss real autocorrelations or lead to the inclusion of 
false autocorrelations; either case will produce poor models giving misleading 
predictions. There are two possible causes of incorrect cutoffs which we will 
investigate in this paper. 
 
First, the usual calculations of the standard errors of the autocorrelation 
coefficients assume that the autocorrelation coefficients are asymptotically 
normally distributed. This means that as the sample size increases, the 
distribution of the autocorrelation coefficients becomes more normal. Therefore, 
the first question is: how much error is introduced by the assumption of normality 
when the sample size is small? It is interesting that texts on time series analysis 
commonly only provide approximate formulas. 
 
Second, the distribution of most financial time series is non-normal with heavy 
tails. As I have previously shown, the distribution of the S&P 500 stock index is 
matched extremely well by the t-distribution with location-scale parameters. [6] 
Thus, the second question is: are the standard cutoffs for testing the statistical 
significance of autocorrelations correct when applied to heavy-tailed financial 
data?  
 
Standard calculations 
 
The ACF is calculated using equations 2.1.9 and 2.1.10 from Box, Jenkins, 
Reinsel (BJR) [1]: 
 

0c

c
r k

k =   where ( )( )zzzz
N

c kt

kN

t
tk −−= +

−

=
∑

1

1
 and k = 0, 1, 2, … , K 

 
z is the sample mean of the time series, N is the number of observations, t is the 
index of the observation, and k is the lag. BJR recommends that the analyst keep 
k < N/4 and N > 50 for meaningful results.  
 
BJR notes that the autocorrelation coefficients tend to be independently and 
normally distributed with mean 0 and variance 1/N for large N. The main formula 
used to compute approximate 95% confidence limits of for the rk values is -1/N ± 
2/N½, which is often shortened to ± 2/N½. [1,2].  
 
The PACF was calculated by the method of successively fitting linear regressions 
and retaining the last regression coefficient computed at each step. The 
asymptotic 95% confidence intervals for PACF values are also commonly 
computed using the formula ± 2/N½.[1,2] PACF values outside these cutoffs are 
considered statistically significant. 
 
The algorithms used to compute ACF and PACF were verified against the 
published results for the batch data in BJR (Tables 2.1, 2.2, 3.1).[1] Results 
agree and are shown in Table 1. 



 
 
Answering the questions with Monte Carlo simulations 
 
A straightforward way to answer both questions is to use Monte Carlo 
simulations. By generating thousands of random time series of varying lengths 
using both the normal and t-distributions, we can obtain excellent estimates of 
the best cutoff values to test the statistical significance of autocorrelation 
coefficients. We also avoid the difficult task of determining an exact formula 
which combines the effects of data distribution and sample size. 
 
Simulation parameters were as follows. Each simulation generated 50,000 
random time series. The ACF and PACF were computed for each of the 50,000 
time series. To generate the random normally distributed data, parameters were 
set to mean = 0 and standard deviation = 1. To generate random data with a t-
distribution, I used the previously published parameter set that fit the daily 
percentage changes of the S&P 500 stock index.[6] The 2.5% and 97.5% points 
of the ACF and PACF distributions at a given time lag were used to define the 
Monte Carlo 95% confidence limits. The Monte Carlo confidence limits were then 
compared with the theoretical confidence limits. 
 
The simulations 
 
The first two simulations compared the ACF at lag = 1 for both distributions. 
Figure 1 shows the Monte Carlo 95% confidence limits for the normally 
distributed data (blue) vs. the standard approximation for the theoretical 
confidence limits (± 2/N½ in black). While the lower bounds match quite well, the 
upper bound of the simulation is lower than the theoretical limits, especially for 
smaller sample sizes. Figure 2 shows the same plot as Figure 1 with the Monte 
Carlo 95% confidence limits from second simulation using data generated with 
the t-distribution plotted in red. These bounds are slightly narrower. 
 
The effect of the “full” approximation (-1/N ± 2/N½) for the 95% theoretical 
confidence limits is important. Figure 3 shows how the -1/N term shifts the 
theoretical confidence limits and makes them more symmetric when compared to 
the center of the confidence limits from the simulations.  
 
Figure 4 to 6 show the same plots for the PACF. Similar effects are present. 
 
The simulations also show that using a constant cutoff for statistical significance 
of autocorrelations at various time lags for the same N is incorrect for smaller N. 
Tables 2 and 3 show the Monte Carlo vs. theoretical 95% confidence limits for 
the ACF lags 1 to 15 for N = 63 and N = 252. Figure 7 plots the Monte Carlo 
confidence limits for the ACF and PACF at N=63 with the ± 2/N½ limits. 
 



At the smaller sample size, the Monte Carlo 95% confidence limits are narrower 
by approximately 0.09 at lag 15 for the ACF. The effect is much smaller (0.017) 
at lag 15 for N = 252. (The values 63 and 252 for N were chosen because they 
are the number of trading days in a quarter and a year, respectively.) 
 
Why do the confidence limits narrow as the lag is increased for the ACF at small 
sample sizes? At first glance, this seems backwards. Larger lags decrease the 
sample size, and confidence limits widen as sample size decreases. The 
equation used to compute rk (shown above) provides the explanation. The mean 
of the time series ( z ) and N are not adjusted as k increases. Consequently, as 
the lag k increases, the denominator co is constant and only the numerator 
decreases.  
 
Other the other hand, Monte Carlo confidence limits for the PACF widen because 
regressions at higher lags require removal of data and thus reduce sample size. 
The alternating stair pattern in the PACF confidence limits 1) slowly disappears 
as sample size increase and 2) is present for PACF values calculated using both 
linear regression and the Durbin recursive algorithm (data not shown). This effect 
is likely due to the discrete jumps that occur when lagging data for the 
regression/correlation calculation when the sample size is small. 
 
Conclusions 
 
The answered given by the Monte Carlo simulations to our two questions 
revealed several problems with the usual tests for autocorrelation: 
 
1. The commonly used approximation ± 2/N½ used to define 95% confidence 
limits is incorrect for small sample sizes, but only for the upper limit. For N = 50, 
the approximation gives ± 0.283 while the simulation using the t-distribution gives 
95% confidence limits of -0.283 to + 0.239. This effect would cause some real 
positive autocorrelations to be missed. As Figure 2 shows, the effect persists out 
to N = 252.  
 
2. The “full” approximation -1/N ± 2/N½ shifts the theoretical bounds up. For N = 
50, the “full” approximation gives -0.303 to +0.263 for the 95% confidence limits 
while the simulation using the t-distribution gives 95% confidence limits of -0.283 
to + 0.239.  
 
3. There is a consistent, albeit small difference between Monte Carlo 95% 
confidence limits generated from normally distributed data vs. heavy-tailed data.  
 
4. As Table 2 and Figure 7 show, even when the sample size is moderate 
(N=63), the Monte Carlo 95% confidence limits for the ACF shrink considerably 
as the lag is increased. In contrast, the cutoffs given by the usual approximations 
are constant. This effect is quite small at larger sample size (N = 252); see Table 



3. For the PACF, the Monte Carlo confidence limits widen as lag increases 
(Figure 7). 
 
It is recommended that Monte Carlo simulation be used to generate the cutoffs 
for testing the statistical significance of autocorrelations for time series if the 
sample size is less than several hundred. 
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Figure 1. Plot of autocorrelation function vs. sample size for lag = 1. Black lines 
are the theoretical 95% confidence limits (± 2/N½) and the blue lines are the 
Monte Carlo 95% confidence limits from the simulation using normally distributed 
data. 
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Figure 2. Same as Figure 1 with added red lines representing the Monte Carlo 
confidence limits generated using data from the t-distribution. 
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Figure 3. Same as Figure 2 but with the theoretical 95% confidence limits (black) 
computed using the “full” approximation (-1/N ± 2/N½). The extra -1/N term shifts 
the theoretical limits.  
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Figure 4. Plot of partial autocorrelation function vs. sample size for lag = 1. Black 
lines are the theoretical 95% confidence limits (± 2/N½) and the blue lines are the 
Monte Carlo 95% confidence limits from the simulation using normally distributed 
data. 
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Figure 5. Same as Figure 4 with added red lines representing the Monte Carlo 
confidence limits generated using data from the t-distribution 
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Figure 6. Same as Figure 5 but with the theoretical 95% confidence limits (black) 
computed using the “full” approximation (-1/N ± 2/N½). 
 



 
Figure 7. Plot of ACF (top) and PACF(bottom) with ± 2/N½ confidence limits in 
black and Monte Carlo confidence limits in blue for N = 63. 
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Table 1. Comparison of results from algorithms used in this paper to compute 
ACF and PACF vs. published results for the batch dataset in BJR. Results are in 
good agreement. 
 

Lag published BJR ACF ACF this paper published BJR PACF PACF this paper
1 -0.39 -0.39 -0.40 -0.42
2 0.30 0.30 0.19 0.19
3 -0.17 -0.17 0.01 0.01
4 0.07 0.07 -0.07 -0.06
5 -0.10 -0.10 -0.07 -0.07
6 -0.05 -0.05 -0.15 -0.14
7 0.04 0.04 0.05 0.05
8 -0.04 -0.04 0.00 0.00
9 -0.01 0.00 -0.10 -0.10

10 0.01 0.01 0.05 0.05
11 0.11 0.11 0.18 0.18
12 -0.07 -0.07 -0.05 -0.05
13 0.15 0.15 0.09 0.09
14 0.04 0.04 0.18 0.18
15 -0.01 -0.01 0.01 0.01  

 
 
 
Table 2. Differences between 95% Monte Carlo confidence limits and theoretical 
constant cutoffs for N = 63. 
 

Lag
Lower 95% 
simulation

Upper 95% 
simulation

Lower -1/N-2/sqrt(N) Upper -1/N+2/sqrt(N) Lower -2/sqrt(N) Upper 2/sqrt(N)

1 -0.248 0.220 -0.268 0.236 -0.252 0.252
2 -0.248 0.219 -0.268 0.236 -0.252 0.252
3 -0.244 0.215 -0.268 0.236 -0.252 0.252
4 -0.244 0.216 -0.268 0.236 -0.252 0.252
5 -0.239 0.213 -0.268 0.236 -0.252 0.252
6 -0.241 0.211 -0.268 0.236 -0.252 0.252
7 -0.237 0.207 -0.268 0.236 -0.252 0.252
8 -0.235 0.206 -0.268 0.236 -0.252 0.252
9 -0.233 0.206 -0.268 0.236 -0.252 0.252

10 -0.230 0.204 -0.268 0.236 -0.252 0.252
11 -0.228 0.201 -0.268 0.236 -0.252 0.252
12 -0.226 0.201 -0.268 0.236 -0.252 0.252
13 -0.222 0.198 -0.268 0.236 -0.252 0.252
14 -0.223 0.196 -0.268 0.236 -0.252 0.252
15 -0.220 0.193 -0.268 0.236 -0.252 0.252  



 
Table 3. Differences between 95% Monte Carlo confidence limits and theoretical 
constant cutoffs for N = 252. 
 

Lag
Lower 95% 
simulation

Upper 95% 
simulation

Lower -1/N-2/sqrt(N) Upper -1/N+2/sqrt(N) Lower -2/sqrt(N) Upper 2/sqrt(N)

1 -0.124 0.118 -0.130 0.122 -0.126 0.126
2 -0.124 0.117 -0.130 0.122 -0.126 0.126
3 -0.124 0.119 -0.130 0.122 -0.126 0.126
4 -0.124 0.117 -0.130 0.122 -0.126 0.126
5 -0.124 0.117 -0.130 0.122 -0.126 0.126
6 -0.125 0.118 -0.130 0.122 -0.126 0.126
7 -0.123 0.116 -0.130 0.122 -0.126 0.126
8 -0.124 0.116 -0.130 0.122 -0.126 0.126
9 -0.123 0.114 -0.130 0.122 -0.126 0.126

10 -0.122 0.115 -0.130 0.122 -0.126 0.126
11 -0.123 0.116 -0.130 0.122 -0.126 0.126
12 -0.122 0.116 -0.130 0.122 -0.126 0.126
13 -0.123 0.115 -0.130 0.122 -0.126 0.126
14 -0.124 0.114 -0.130 0.122 -0.126 0.126
15 -0.122 0.113 -0.130 0.122 -0.126 0.126  
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